Hydrophobic-functionalized ZIF-8 nanoparticles incorporated PDMS membranes for high-selective separation of propane/nitrogen

نویسندگان

  • Jianwei Yuan
  • Qianqian Li
  • Jie Shen
  • Kang Huang
  • Gongping Liu
  • Jing Zhao
  • Jingui Duan
  • Wanqin Jin
چکیده

It is still a great challenge to prepare high performance mixed matrix membranes (MMMs) because of the difficulty in finely tuning the compatibility between filler and organic phases. In this work, ZIF-8 nanoparticles hydrophobically functionalized by 5, 6-dimethylbenzimidazole (DMBIM) via shell ligand exchange (SLE) reaction were incorporated into polydimethylsiloxane (PDMS) matrix to fabricate defect-free MMMs. Organic-–inorganic interface compatibility was realized because of more abundant organic ligands from DMBIM. The effects of different loadings on membrane microstructure and gas separation performance were investigated systematically. A significantly enhanced C3H8/N2 separation performance with C3H8 permeability over 2.10 × 10 4 Barrer (91 % higher than that of pure PDMS membrane) and C3H8/N2 selectivity of 99.5 (116 % higher than that of pure PDMS membrane) were achieved. Additionally, the as-prepared membrane also exhibited excellent stability during long term operation. © 2016 Curtin University of Technology and John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanocomposite Ultrafiltration Membranes Incorporated with Zeolite and Carbon Nanotubes for Enhanced Water Separation

The objective of this work is to develop a new class of nanocomposite ultrafiltration (UF) membranes with excellent solute rejection rate and superior water flux using zeolitic imidazolate framework-8 (ZIF-8) and multi-walled carbon nanotubes (MWCNTs). The effect of ZIF-8 and MWCNTs loadings on the properties of polyvinyldifluoride (PVDF)-based membrane were investigated by introducing respecti...

متن کامل

Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions.

Exceptional high quality ZIF-8 membranes prepared through a novel seeded growth method in aqueous solutions at near room temperature exhibit excellent separation performance for C2/C3 hydrocarbon mixtures. The separation factors for mixtures of ethane/propane, ethylene/propylene and ethylene/propane are ∼80, ∼10 and ∼167, respectively.

متن کامل

Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation.

Continuous ZIF-67 polycrystalline membranes with effective propylene/propane separation performances were successfully fabricated through the incorporation of zinc ions into the ZIF-67 framework. The separation factor increases from 1.4 for the pure ZIF-67 membrane to 50.5 for the 90% zinc-substituted ZIF-67 membrane.

متن کامل

Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation

The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact ...

متن کامل

Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate.

A thin, dense, compact and hydrogen selective ZIF-8 membrane was synthesized on a polymer/metal oxide mixed-matrix support by a secondary seeding method. The new concept of incorporating ZnO particles into the support and PDMS coating of the ZIF-8 layer is introduced to improve the preparation of ZIF-polymer composite membranes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016